

Application of new techlonogies in molecular detection and research of Africa Swine Fever virus

Dr. Minh Thong LE School of Biotechnology International University – Vietnam National University, HCMc

INTRODUCTION

The Africa Swine Fever Pandemic

Figure 1. Map of ASF reported worldwide (OIE, 2021)

> Affecting 32 countries (OIE - World Organization for Animal Health)

Caused huge economic loss

BILLION

BILLION

Africa Swine Fever virus - ASFV

4

Fast Molecular Detection of ASF virus from whole blood using direct PCR technique

PCR based detection as Gold standard method for ASFV diagnostics (OIE)

Nucleic acid extraction drawbacks

Material loss during nucleic acid extraction

Loss: 100 % - (6.7 % x 70 % x 8 %) = 100 % - 3.7 %

Laborious – Laziness

Direct PCR approach

Fig 3. Comparison of conventional approach to PCR vs. direct PCR approach (Thermo Fisher Scientific).

FDA Approved nucleic acid based tests: direct tests

An official website of the United States government Here's how you know ~

On this page:

- List of Human Genetic Tests
- List of Microbial Tests

Mycobacterium tuberculosis	Xpert MTB/RIF Assay	Cepheid	<u>K131706</u>
	BDProbetec ET Mycobacterium tuberculosis complex culture identification kit	Becton, Dickinson, & Co.	<u>K000884</u>
	Amplified Mycobacterium tuberculosis Direct Test	Gen-Probe, Inc.	<u>P940034</u>
Mycoplasma pneumoniae	illumigene Mycoplasma <mark>Direct</mark> DNA Amplification Assay	Meridian Bioscience, Inc.	<u>K160829</u>
	illumigene Mycoplasma DNA Amplification Assay	Meridian Bioscience, Inc.	<u>K152800</u> , <u>K123423</u>

Why Blood?

12

PCR inhibitors are main obstackles

Matrix	Contained inhibitors	References
Clinical specimens (e.g. blood; muscle tissues)	Antiviral substances (e.g. acyclovir), Haemoglobin, Heparin, Hormones, IgG, Lactoferrin, Myoglobin	Al-Soud and Rådström (2001); Burkardt (2000); Rådström et al. (2004); Yedidag et al. (1996)
Stool	Complex polysaccharides, Bile salts, Lipids, Urate	Kreader (1996); Monteiro et al. (1997); Rådström et al. (2004); Chaturvedi et al. (2008)
Seafood, bivalves, oysters	Algae, Glycogen, Polysaccharides	Atmar et al. (1993, 1995); Richards (1999)
Berries	Phenols, Polysaccharides	Seeram <i>et al.</i> (2006); Wei <i>et al.</i> (2008)
Plants	Pectin, Polyphenols, Polysaccharides, Xylan	Demeke and Adams (1992); Henson and French (1993); John (1992); Sipahioglu <i>et al.</i> (2006); Su and Gibor (1988); Wan and Wilkins (1994); Wei <i>et al.</i> (2008); Wilkins and Smart 1996
Cheese, milk	Proteases (e.g. plasmin), Calcium ions,	Bickley et al. (1996); Powell et al. (1994); Rossen et al. (1992)
Water, environment	Debris, Fulmic acids, Humic acids, Humic material Metal ions, Polyphenol	Abbaszadegan et al. (1993); Ijzerman et al. (1997)
Palaeobiology, archaeology, forensic	Bone dust, Coprolite Peat extract, Clay-rich soil	Baar <i>et al.</i> (2011)

Adapted from Schrader et al, 2012

But How? Hack it and Beat it

- Change the platform (Crispr-Cas, LAMP, RPA, LFA, ...)
- Device investigation
- Sample quick treatment
- Hack PCR components

Materials and Methods

- Samples:
 - Infected DNA
 - Whole blood from uninfected pig
 - Inactivated infected blood
 - p72 recombinant plasmid DNA
- Primer:
 - ASFV P72 (Ballester et al., 2004),
 - Pig Estrogen Receptor(Vega, R. S. et al, 2018)

Primer	Sequence	Target gene	Product size
PPA-1 forward	5'-AGTTATGGGAAACCCGACCC-3'	p72	257
PPA-2 reverse	5'-CCCTGAATCGGAGCATCCT-3'	(ASFV)	237
ESR forward	5' CCTGTTTTTACAGTGACTTTTACAGAG 3'	Estrogen	100
ESR reverse	5' CACTTCGAGGGTCAGTCCAATTAG 3'	(control)	120

Table 1: The PPA-1/2 and GCG primer sets.

RESULTS

Initial optimization

Fig. 5: PCR performance on ASFV amplification with annealing temperature vary from 57oC to 60oC.

Direct amplification of ASFV using whole blood

Fig. 6: Comparison of PCR performance of 2 enzymes, Taq and FU in the presence of 5 % whole blood components and anticoagulants EDTA

Lane 1: 8 μL infected blood Lane 2: 9 μL infected blood Lane 3: 10 μL infected blood Lane 4: 11 μL infected blood Lane 5: 12 μL infected blood **Lane 6: 8 μL uninfected blood** Lane NC: nuclease-free water

Figure 7: Amplification of ASFV using with increased whole blood content

Direct multiplex PCR for ASFV and an internal control

Fig 8. Whole blood direct-multiplex PCR with internal trontrol ESR-R/F and PPA-1/2

Initial acessment of Limit of detection

Lane Control Lane 1: 1 billion copies/µL Lane 2: 10 milion copies/µL Lane 3: 100,000 copies/µL Lane 4: 1000 copies/µL Lane NC: Negative control

Fig 9. Whole blood direct-multiplex PCR with vary P72 plasmid copies

CONCLUSIONS and FUTURE WORKS

- Direct multiplex PCR using whole blood may become potential alternative for ASFV detection compare with traditional procedure
- Need investigation for LOD, sensitivity and specificity
- Validation on other sample types
- Direct multiplex realtime PCR?
- Mastermix for LOD of 10¹ copies per ml
- Light weight PCR device for point-of-care application

Whole genome sequencing of ASF virus using Long Amplification and Nanopore sequencing

Native Dificulties in Combat with the ASFV

- Environmental stability
 - Transmission without the live host
- Variation in vaccine efficiency
 - Vaccine can not cover all genotypes
- Complex genome
 - 170 193 kb of duplex DNA with ~ 200 proteins
- High genetic variability
 - 24 genotypes by B646L p72 sequencing

Meaning of research on ASFV on Genome level

- Monitoring viral diversity and evolution
- Tracking the epidemic and infectious origin of the outbreaks
- Understanding of host immune evasion
- Development of molecular detection
- Development of effective vaccine

Challenges in ASFV whole genome sequencing

Large and complex genome

- ~ 190 kb
- Repeat sequence
- Low CG content regions

Containment of high fraction of host DNA (low viral DNA)

Sample	Group	PL	No Reads	Mapped Reads
SAMN22028792	ASFV	ILLUMINA	4,446,389	19,337 (0.43%)
SAMN22028794	ASFV	ILLUMINA	4,801,869	10,571 (0.22%)
SAMN29762774	ASFV	ILLUM <mark>IN</mark> A	3,917,863	6,534 (0.17%)
SAMN22028798	ASFV	ONT	535,304	1,435 (0.27%)
SAMN22028809	ASFV	ONT	100,729	343 (0.34%)
SAMN22028812	ASFV	ONT	202,385	240 (0.12%)

Strategy: Viral DNA Enrichment by Long range PCR and Longread sequencing (ONT)

Li et al, 2024

Design new primer set for amplifying ASFV whole genome

Suscess amplification of ASFV whole genome and Nanopore sequencing

Assembly of ASFV whole genome

Assembly of ASFV whole genome: Coverage

Phylogenetic analysis

Analysis of mutations on individual genes

33

CONCLUSIONS and FUTURE WORKS

- Enrichment of ASFV DNA by long PCR and following by Nanopore long read sequencing facilitate the study of ASFV on genomic level
 - Eliminate host DNA in final result
 - Effective on low viral titer samples
 - High accuracy
 - Comprehensive and almost complete genome (except telomeric repeat regions)
 - No need to polish by short read sequencing
- Validate the mutations by Sanger sequencing
- Build the deeper analysis pipeline for functional study

Thank you ^^

